
Deep RL with a Handful of Trials
Obtaining Data-Efficiency with Bayesian Neural Network Dynamics Models
Yarin Gal, Rowan McAllister, Carl Rasmussen {yg279,rtm26,cer54}@cam.ac.uk

Problem

In many tasks, data efficiency
is critical;

but deep reinforcement learning is inherently data
inefficient.

How can we get deep RL to be data efficient?

Possible Solution: PILCO

PILCO = data-efficient RL framework exploiting probabilistic dynamics models

Xt Xt+1

Ut Ut+1

π π

f

•With dynamics models agents can generalise
knowledge on system dynamics to unobserved states

•But selecting a single dynamics model from a large
plausible set would lead to model bias

– state prediction after many time steps is random noise

•Dynamics uncertainty is crucial; it focuses policy
optimisation towards policy changes that are more cer-
tain to have effects

•PILCO avoids model bias by considering all plausible
dynamics models in prediction

PILCO Algorithm:

1: Define policy’s functional form: π : zt × ψ → ut.
2: Initialise policy parameters ψ randomly.
3: repeat
4: Execute system, record data.
5: Learn dynamics model.
6: Predict system trajectories from p(X0) to p(XT ).
7: Evaluate policy: J(ψ) =

∑T
t=0 γ

tEX[cost(Xt)|ψ].
8: Optimise policy: ψ ← argminψJ(ψ).
9: until policy parameters ψ converge

PILCO uses Gaussian processes to model dynamics; but these don’t
scale to high dimensional observation spaces...

Model Based Deep RL

Main idea: use the PILCO framework with deep neural network dynamics models.
But for this we need...

1. Output uncertainty: dynamics model has to capture model’s ignorance
about system dynamics.

2. Input uncertainty: PILCO propagates state distributions (step 6) through
dynamics model. Uncertain dynamics outputs are passed between time steps as
uncertain inputs to dynamics model in following time steps.

Depiction of probabilistic dynamics model with input and output distributions

Our approach...

1. Output uncertainty: use Bayesian neural networks with dropout approximate
inference, MC sampling to estimate uncertainty [Gal 2015]

2. Following RNN dropout [Gal 2015], sample mask and fix through time = draw
function realisation from belief over dynamics

3. Input uncertainty: propagate particles through time [McHutchon, 2014], and
moment-match output distribution every time step

Deep PILCO Algorithm (adapting step 6 in PILCO Algorithm):

1: Define time horizon T .
2: Initialise set of K particles xk0 ∼ P (X0).
3: for k = 1 to K do
4: Sample BNN dynamics model weights W k.
5: end for
6: for time t = 1 to T do
7: for each particle x1t to xKt do
8: Evaluate BNN with weights W k and input particle xkt , obtain output ykt .
9: end for

10: Calculate mean µt and standard deviation σ2t of {y1t , ..., yKt }.
11: Sample set of K particles xkt+1 ∼ N (µt, σ

2
t ).

12: end for

Proof of Concept

•Evaluated the ideas above on the cartpole swing-up benchmark

100 101 102 103

Trials (log scale)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
st

Gu et al. (2016) Lillicrap et al. (2016)

PILCO

Deep PILCO

mc

mp

l

θ

xc

yp

xp

l

u

•Used low-dimensional state representation

• Improved from Lillicrap el al. [2015]’s thou-
sands of trials and Gu el al. [2015]’s hun-
dreds down to a handful of trials

•Close to PILCO’s state-of-the-art data
efficiency, obtaining lower cost than
PILCO’s by modelling time dependence

•Faster running time and lower time com-
plexity compared to PILCO

What’s Next

A series of exciting challenges extending this work:

•How do we model dynamics with high dim. observation spaces?

– Need to predict next high dim. state

– Current approaches train auto-encoders (AEs), and use decoder in dynamics
model

– But pre-training AEs requires many observations – too costly

– And there’s no need for the AE decoding itself for RL!

– Is there a better approach?

•Better uncertainty estimates?

– Dropout’s uncertainty estimates are cheap

– But can we get improved estimates and improve data efficiency?

•Capture multi-modal state distributions?

– We moment-matched the output distribution to simplify controller opti-
misation

– Can we avoid moment-matching?


