Deep RL with a Handful of Trials

Obtaining Data-Efficiency with Bayesian Neural Network Dynamics Models

Yarin Gal, Rowan McAllister, Carl Rasmussen {yg279,rtm26,cer54}@cam.ac.uk

Problem

ccRogcRo

In many tasks, data efficiency but deep reinforcement learning is inherently data
is critical; inefficient.

How can we get deep RL to be data efficient?

Possible Solution: PILCO

PILCO = data-efficient RL framework exploiting probabilistic dynamics models

e With dynamics models agents can generalise
knowledge on system dynamics to unobserved states

6 @ e But selecting a single dynamics model from a large
plausible set would lead to model bias

—state prediction after many time steps is random noise

e Dynamics uncertainty is crucial; it focuses policy

optimisation towards policy changes that are more cer-
tain to have effects

e PILCO avoids model bias by considering all plausible
dynamics models in prediction

PILCO Algorithm:

1. Define policy’s functional form: 7w : z; X ¥ — ;.

2. Initialise policy parameters 1) randomly.

3. repeat

1+ Execute system, record data.

5. Learn dynamics model.

6. Predict system trajectories from p(Xy) to p(Xr7).
». Evaluate policy: J(¢) =3, ' Ex[cost(X;)|¢].
s Optimise policy: v <— argmin,J(¢).

o. until policy parameters 1) converge

PILCO uses Gaussian processes to model dynamics; but these don't
scale to high dimensional observation spaces...

Model Based Deep RL

Main idea: use the PILCO framework with deep neural network dynamics models.
But for this we need...

1. Qutput uncertainty: dynamics model has to capture model’s ignorance
about system dynamics.

2. Input uncertainty: PILCO propagates state distributions (step 6) through
dynamics model. Uncertain dynamics outputs are passed between time steps as
uncertain inputs to dynamics model in following time steps.

X

Depiction of probabilistic dynamics model with input and output distributions

Our approach...

1. Output uncertainty: use Bayesian neural networks with dropout approximate
inference, MC sampling to estimate uncertainty [Gal 2015]

2. Following RNN dropout [Gal 2015], sample mask and fix through time = draw
function realisation from belief over dynamics

3. Input uncertainty: propagate particles through time [McHutchon, 2014], and
moment-match output distribution every time step

Deep PILCO Algorithm (adapting step 6 in PILCO Algorithm):

1. Define time horizon T.

> Initialise set of K particles zf ~ P(Xj).

: for k =1to K do

+ Sample BNN dynamics model weights 17/".

5. end for

e: for timet =1to 7T do

7. for each particle z} to 2* do

8: Evaluate BNN with weights 7" and input particle ', obtain output /.
o. end for

0. Calculate mean yi; and standard deviation o7 of {y/, ..., y%}.
1. Sample set of K particles z},; ~ N, 07).

12. end for

2l UNIVERSITY OF

FARSH A 44

O

» CAMBRIDGE

4

Proof of Concept

e Evaluated the ideas above on the cartpole swing-up benchmark

1.0 ——
— PILCO
— Deep PILCO [T
0 ' ' — ' ' — ' ' B
10 10 10 Gu et al. (2016) 10 Lillicrap et al. (2016)

Trials (log scale)

e Used low-dimensional state representation

e Improved from Lillicrap el al. [2015]'s thou-

sands of trials and Gu el al. [2015]'s hun-
dreds down to a handful of trials

e Close to PILCO’s state-of-the-art data
efficiency, obtaining lower cost than
PILCQO's by modelling time dependence

e Faster running time and lower time com-
plexity compared to PILCO

What’'s Next

A series of exciting challenges extending this work:

e How do we model dynamics with high dim. observation spaces?’

— Need to predict next high dim. state

— Current approaches train auto-encoders (AEs), and use decoder in dynamics
model

— But pre-training AEs requires many observations — too costly
— And there’s no need for the AE decoding itself for RL!
—Is there a better approach?

e Better uncertainty estimates?’

— Dropout’s uncertainty estimates are cheap
— But can we get improved estimates and improve data efficiency?

e Capture multi-modal state distributions?

—We moment-matched the output distribution to simplify controller opti-
misation

— Can we avoid moment-matching?

