Dropout in Recurrent Neural Networks A Theoretically Grounded Dropout Variant in RNNs using Variational Inference Yarin Gal yg279@cam.ac.uk

RNNs overfit quickly

RNNs are **awesome**;

- This means...
- We can't use **large** models
- We have to use **early stopping**
- We can't use **small data**
- We have to **waste data** for validation sets

Existing dropout in RNNs

Let's **use dropout** then. But lots of research has claimed that that's a **bad idea**: • Pachitariu & Sahani, 2013

- noise added in the recurrent connections of an RNN leads to model **instabilities**
- **Bayer et al.**, 2013
- -with dropout, the RNN's **dynamics change** dramatically
- Pham et al., 2014
- -dropout in recurrent layers **disrupts** the RNN's ability to model sequences
- Zaremba et al., 2014
- -applying dropout to the non-recurrent connections alone results in improved performance
- Bluche et al., 2015
- -exploratory analysis of the performance of dropout before, inside, and after the RNN's
- Moon et al., 2015
- Drop elements in the **LSTM's cell** using the same mask at every time step.

Many settled on using dropout for inputs and outputs alone.

VI based dropout in RNNs

Uses the **same dropout mask** at **each time step**, including recurrent layers, and **drops word types** at random throughout the sentence:

Why does it make sense?

- Input: sequence of vectors $\mathbf{x} = \{\mathbf{x}_1, ..., \mathbf{x}_T\}$ with T time steps
- Let $\omega = \{all model weight matrices\}$ and put prior $p(\omega)$ (e.g. standard Gaussian)
- Define $\mathbf{h}_t = \mathbf{f}_{\mathbf{h}}^{\boldsymbol{\omega}}(\mathbf{x}_t, \mathbf{h}_{t-1})$ -single recurrent unit transition. E.g. $tanh(W\mathbf{x}_t + U\mathbf{h}_{t-1} + b)$ (similarly for LSTM, GRU)
- Set $\mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x}) = \mathbf{f}^{\boldsymbol{\omega}}_{\mathbf{v}}(\mathbf{h}_T)$
- model **output** (e.g. affine transformation of last state, or function of all states)
- Lastly, define $p(\mathbf{y}|\mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x}))$ - model **likelihood** on random function output f
- Variational interpretation of dropout [Gal and Ghahramani, 2015]: Dropout objective minimises

$$\begin{split} \mathsf{KL}\big(q(\boldsymbol{\omega})||p(\boldsymbol{\omega}|\mathbf{X},\mathbf{Y})\big) &\propto -\int q(\boldsymbol{\omega})\log p(\mathbf{Y}|\mathbf{X},\boldsymbol{\omega})\mathsf{d}\boldsymbol{\omega} + \mathsf{KL}(q(\boldsymbol{\omega})||p(\boldsymbol{\omega})) \\ &= -\sum_{i=1}^N \int q(\boldsymbol{\omega})\log p(\mathbf{y}_i|\mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x}_i))\mathsf{d}\boldsymbol{\omega} + \mathsf{KL}(q(\boldsymbol{\omega})||p(\boldsymbol{\omega})). \end{split}$$

with $q(\boldsymbol{\omega})$ factorising over weight columns \mathbf{w}_{ik} , e. ● But

$$\int q(\boldsymbol{\omega}) \log p(\mathbf{y} | \mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x})) d\boldsymbol{\omega} = \int q(\boldsymbol{\omega}) \log p\left(\mathbf{y} | \mathbf{f}^{\boldsymbol{\omega}}_{\mathbf{y}}(\mathbf{f}^{\boldsymbol{\omega}}_{\mathbf{h}}(\mathbf{x}_{T}, \dots, \mathbf{f}^{\boldsymbol{\omega}}_{\mathbf{h}}(\mathbf{x}_{1}, \mathbf{h}_{0}) \dots))\right) d\boldsymbol{\omega},$$

• So using MC integration with $\widehat{\boldsymbol{\omega}}_i \sim q(\boldsymbol{\omega})$,

$$\mathcal{L}_{VI} \approx -\sum_{i=1}^{N} \log p\left(\mathbf{y}_{i} \middle| \mathbf{f}_{\mathbf{y}}^{\widehat{\boldsymbol{\omega}}_{i}} (\mathbf{f}_{\mathbf{h}}^{\widehat{\boldsymbol{\omega}}_{i}} (\mathbf{x}_{iT}, \dots \mathbf{f}_{\mathbf{h}}^{\widehat{\boldsymbol{\omega}}_{i}} (\mathbf{x}_{i1}, \mathbf{h}_{0}) \dots) \right) \right) + \mathsf{KL} \left(q_{\theta} (\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega}) \right).$$

using random mask to set weight columns to zero (dropping units), repeating the same mask at each time step for all weight **matrices** (including embedding layer)

$$\mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x})$$
. E.g. $\mathcal{N}(\mathbf{y};\mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x}),\sigma^2)$

e.g.
$$q(\mathbf{w}_{ik}) = p\delta_0 + (1-p)\delta_{\mathbf{m}_{ik}}$$
.

• Penn Treebank language modelling

	Medium LSTM			Large LSTM		
	Validation	Test	WPS	Validation	Test	WPS
Non-regularized (early stopping)	121.1	121.7	5.5 K	128.3	127.4	2.5K
Moon et al. [2015]	100.7	97.0	4.8 K	122.9	118.7	3 K
Moon et al. [2015] +emb dropout	88.9	86.5	4.8 K	88.8	86.0	3 K
Zaremba et al. [2014]	86.2	82.7	5.5 K	82.2	78.4	2.5K
Variational (tied weights)	81.8 ± 0.2	79.7 ± 0.1	4.7 K	77.3 ± 0.2	75.0 ± 0.1	2.4K
Variational (tied weights, MC)	_	79.0 ± 0.1	_		74.1 ± 0.0	_
Variational (untied weights)	81.9 ± 0.2	79.7 ± 0.1	$2.7 \mathrm{K}$	77.9 ± 0.3	75.2 ± 0.2	1.6K
Variational (untied weights, MC)	_	78.6 ± 0.1			73.4 ± 0.0	

Single model perplexity (on test and validation sets). Two LSTM sizes are compared using Zaremba, Sutskever, and Vinyals [2014]'s setup.

Validation perplexity (medium model) with dropout regularisation alone

• Sentiment analysis (raw Cornell film reviews corpus, Pang and Lee [2005])

Different dropout probabilities used with the recurrent layer (p_U) and embedding layer (p_E) :

NIVERSITY OF CAMBRIDGE

Results